
Page 1 of 6

Embedded Systems Engineering

3. Semester

Subject to Approval by the Relevant Bodies

Course Type THW ECTS

Project Management SE 2 3

Electronic Engineering Project PT 0,5 6

System-on-Chip Design IC 4 6

Design Verification IC 2 3

Continuous Delivery in Embedded Systems IC 4 6

Realtime Computing IC 4 6

 16,5 30

SE Seminar

PT Project

IC Integrated course

THW Hours per week

ECTS European Credit Transfer and Accumulation System

Embedded Systems Engineering 3. Semester

Page 2 of 6

Project Management 2 SWS/3 ECTS

Teaching Content

• Project types and methodologies

• Project phases, milestones and gates

• Project plans

• Effort estimation methodologies

• Communication plans and meeting structures

• Resource-based and skill-based planning

• Risk management

• Failure mode and effect Analysis

• Agile project management

Competence Acquisition

After finishing this course, students can

• explain the nature of projects,

• compare different methods of project management,

• describe the different roles of persons involved into a project,

• create a project plan and add phases, milestones and gates of projects,

• estimate the efforts for tasks, work packages, and projects, and

• explain the risk management of a project.

Electronic Engineering Project 0,5 SWS/6 ECTS

Teaching Content

• Solving a specific technical task on the under supervision that corresponds to the level of

education.

Competence Acquisition

After finishing this course, students can

• work on and solve a technical problem independently and,

• document and present the solution.

Embedded Systems Engineering 3. Semester

Page 3 of 6

System-on-Chip Design 4 SWS/6 ECTS

Teaching Content

• Fundamentals of a modern instruction set architecture (e.g. RISC-V, ARM, etc.).

• Design and simulation of custom bus peripherals

• Development of a top-level chip design with a processor core, custom bus peripherals as well

as existing IP from libraries

• Instantiation of the architecture on a programmable logic device (FPGA) and verification via

execution of software applications

• Introduction to a chip design workflow and toolchain for application specific integrated

circuits (ASICs)

• Implementation of the top-level chip design for production

Competence Acquisition

After finishing this course, students can

• are familiar with a modern instruction set architecture and its various extensions,

• will be able to design and verify custom bus addressable peripherals,

• will be able to assemble a microarchitecture in an FPGA device for prototyping,

• can use existing hardware IPs via embedding them within their design,

• can program and execute software for the designed architecture to verify its general

functionality, and

• are familiar with a chip design workflow and can prepare a digital design for production.

Embedded Systems Engineering 3. Semester

Page 4 of 6

Design Verification 2 SWS/3 ECTS

Teaching Content

• Introduction to functional verification

• Functional verification in electronic circuit development: system level, schematic and PCB

• Functional verification in the System-on-Chip (SoC) design flow

• Ensure the correctness and reliability of a design

• Requirements driven verification: requirement specification and verification plan, simulation,

and creating testbenches

• Verification methods like pseudo-random stimuli generation, coverage-driven verification,

assertion-based verification, and self-checking mechanisms

• RTL und gatelevel-simulation

• Hardware description language usage for verification

• Reporting the findings and addressing any identified issues

Competence Acquisition

After finishing this course, students can

• analyse the requirements of an electronic device design,

• create a verification plan,

• create a testbench architecture for a SoC,

• setup a unit level or SoC level testbench with all the required components by a hardware

description language,

• setup a regression to simulate the unit with several seeds, and

• analyse the failures and report them, apply required changes.

Embedded Systems Engineering 3. Semester

Page 5 of 6

Continuous Delivery in Embedded Systems 4 SWS/6 ECTS

Teaching Content

• IoT architectures: selection of architectural patterns with a focus on IoT systems, message-

oriented architectures and microservices

• Architectural risk analysis: attack surface analysis, and performing threat modeling to assess

potential security risks

• Software development lifecycle: phases of software development and process models used

to manage the software development process

• Continuous integration pipeline: pre-commit stage (code inspection, test-driven

development), commit stage (unit testing, security testing, static code analysis, artifact

repository)

• Continuous delivery pipeline: acceptance stage (deployment into the test environment,

acceptance testing, penetration testing), production stage (release into production)

Competence Acquisition

After finishing this course, students can

• master selected architecture patterns and communication protocols for designing embedded

and IoT systems,

• analyse the risk of embedded and IoT architectures to identify potential security issues in the

design,

• set up a CI/CD pipeline and carry out or automate the activities of the individual stages

(learned in the previous courses),

• master the concept of infrastructure as code and are able to use concrete container

technologies to facilitate the deployment of release candidates (for test and productive

environments), and

• design and automate complex acceptance and penetration test cases for embedded and IoT

systems.

Embedded Systems Engineering 3. Semester

Page 6 of 6

Realtime Computing 4 SWS/6 ECTS

Teaching Content

• Computer Architecture Review

• HW / SW partitioning and synchronization of HW and SW tasks to avoid race conditions

• Multitasking/Multithreading and Scheduling, Interprocess Communication (Pipes, Queues,

Shared Memories)

• Operating Systems (Embedded Linux, Free RTOS)

• Unix/Linux Ecosystem

• Programming Toolchains

• Debugging and Profiling

• Networking

• HW Acceleration, custom circuits, and hardened communication interfaces in the FPGA

• SW-HW Communication using Registers, Dualport-RAMs, FIFO-Queues and Direct Memory

Access (DMA) as well as Scheduling in the FPGA device

Competence Acquisition

After finishing this course, students can

• explain the implications of embedded systems with respect to software development,

• use operating systems for task scheduling, profiling, and debugging,

• analyse real-time requirements and the available strategies to meet them,

• apply high-level programming languages for implementing typical tasks of embedded

systems and know how to deploy them,

• design and use hardware interfaces and custom circuits in an FPGA, and

• access FPGA resources with software applications.

